DEVELOPMENTAL MATH BRIDGE, CERTIFICATE OF COMPLETION

This noncredit Developmental Math Certificate of Completion is designed to provide students in Math with additional just-in-time support to help them successfully complete the non-transfer math courses and reach their goal of successfully completing college level math. To obtain a noncredit Developmental Math Certificate of Completion, students must complete the following two courses.

Course ID	Title	Units/ Hours
Student must com	plete a minimum of one course in Group A	
MATH M901	Bridge to MATH M01	8
MATH M903	Bridge to Intermediate Algebra (MATH M03)	8
Student must com	plete a minimum of one course in Group B	
MATH M905	Bridge to College Algebra (MATH M05, MATH M07 or MATH M11)	8
MATH M905S	Support for College Algebra	35
MATH M915	Bridge to Statistics (MATH M15)	8
MATH M915S	Support for Introductory Statistics	16
Total Hours		24-51
Veer 1		
Year I		Unito/Houro
MATH M901	Bridge to MATH M01 (8 pop-credit hours)	
		0
Spring Semester		Ū
MATH M903	Bridge to Intermediate Algebra (MATH M03) (8 non- credit hours)	0
	Units/Hours	0
Year 2		
Fall Semester		
MATH M905	Bridge to College Algebra (MATH M05, MATH M07 or MATH M11) (8 non-credit hours)	0
MATH M905S	Support for College Algebra (35 non-credit hours)	0
	Units/Hours	0
Spring Semester		
MATH M915	Bridge to Statistics (MATH M15) (8 non-credit hours)	0
MATH M915S	Support for Introductory Statistics (16 non-credit hours)	0
	Units/Hours	0
	Total Units/Hours	0

Upon successful completion of this program, students will be able to:

- simplify expressions and solve equations for linear and quadratic functions
- write the equation of a line in point-slope form, slope-intercept form, and standard form
- rewrite radical expressions in simplest radical form, perform operations with radicals, and solve equations containing radical expressions